Supporting Information:

Equilibrium Structures of the Phosphorus Trihalides PF_{3} and $\mathbf{P C l}_{3}$, and the Phosphoranes $\mathbf{P H}_{3} \mathbf{F}_{2}, \mathrm{PF}_{5}, \mathrm{PCl}_{3} \mathbf{F}_{2}$, and PCl_{5}

Jürgen Breidung and Walter Thiel

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany

Table S1. Computed Vibrational Contributions $\Delta X_{\text {vib }}(X=A, B, C ; M H z)$ to the GroundState Rotational Constants X_{0}, Rotational g Tensors (Dimensionless), and Electronic Contributions $\Delta X_{\text {el }}(\mathrm{MHz})$ to X_{0} of Selected Molecules ${ }^{a, b}$

Molecule	$\Delta A_{\text {vib }}$	$\Delta B_{\text {vib }}$	$\Delta C_{\text {vib }}$	g_{bb}	g_{cc}	ΔB_{el}	ΔC_{el}
PH_{2}	-481.18	-440.16	-2468.5				
PD_{2}	-191.37	-154.86	-909.01				
PF_{2}	+68.07	-46.11	-39.78				
$\mathrm{P}^{35} \mathrm{Cl}_{3}$	-6.937	-6.937	-5.700	-0.02639	-0.01883	-0.0377	-0.0151
$\mathrm{P}^{37} \mathrm{Cl}_{3}$	-6.500	-6.500	-5.292	-0.02507	-0.01781	-0.0340	-0.0135
$\mathrm{P}^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{Cl}$	-6.941	-6.640	-5.559	-0.02552^{c}	-0.01849	-0.0353^{c}	-0.0146
PF_{5}	-15.99	-12.96	-12.96	-0.03524	-0.03314^{d}	-0.0604	-0.0682^{d}
$\mathrm{P}^{35} \mathrm{Cl}_{3} \mathrm{~F}_{2}$	-5.219	-5.219	-3.897	-0.02477	-0.01235	-0.0222	-0.0081
$\mathrm{P}^{37} \mathrm{Cl}_{3} \mathrm{~F}_{2}$	-4.917	-4.917	-3.625	-0.02384	-0.01168	-0.0206	-0.0072
$\mathrm{P}^{35} \mathrm{Cl}_{5}$	-4.020	-3.318	-3.318	-0.02583	-0.01513^{d}	-0.0135	-0.0098^{d}
$\mathrm{P}^{37} \mathrm{Cl}_{5}$	-3.737	-3.085	-3.085	-0.02443	-0.01431^{d}	-0.0121	-0.0088^{d}

${ }^{a}$ The terminology is chosen such that X_{0} is decomposed as follows: $X_{0}=X_{\mathrm{e}}+\Delta X_{\text {vib }}+\Delta X_{\text {el }}$, with X_{e} denoting the equilibrium rotational constant. $\Delta X_{\text {vib }}$ and ΔX_{el} are defined as in ref 74 of the main paper.
${ }^{b}$ The $\Delta X_{\text {vib }}$ values were computed at the level of UHF-CCSD $(T) / A V Q Z$ for $\mathrm{PH}_{2}, \mathrm{PD}_{2}$, and $\mathrm{PF}_{2}, \operatorname{CCSD}(\mathrm{~T}) / \mathrm{AVQZ}$ for $\mathrm{PCl}_{3}, \operatorname{CCSD}(\mathrm{~T}) / \mathrm{VQZ}$ for PF_{5} and $\mathrm{PCl}_{3} \mathrm{~F}_{2}$, and $\operatorname{CCSD}(\mathrm{T}) / \mathrm{VTZ}$ for PCl_{5} at the associated optimized equilibrium geometries (see Tables 3-5 of the main paper; the UHF-CCSD $(\mathrm{T}) / \mathrm{AVQZ}$ geometries of PH_{2} and PF_{2} are as follows: $r_{\mathrm{e}}(\mathrm{PH})=141.90 \mathrm{pm}$, $\left.\theta_{\mathrm{e}}(\mathrm{HPH})=91.884^{\circ} ; r_{\mathrm{e}}(\mathrm{PF})=158.24 \mathrm{pm}, \theta_{\mathrm{e}}(\mathrm{FPF})=98.243^{\circ}\right)$. The g factors as well as ΔX_{el} were always calculated at the $\operatorname{CCSD}(\mathrm{T}) /$ AWCVTZ level at the corresponding best estimated equilibrium geometries (see Tables 3-5 of the main paper). Due to program limitations, the g factors could not be calculated for the open-shell species $\left(\mathrm{PH}_{2}, \mathrm{PD}_{2}, \mathrm{PF}_{2}\right)$.
${ }^{c}$ In addition, $g_{\mathrm{aa}}=-0.02637$ and $\Delta A_{\text {el }}=-0.0377 \mathrm{MHz}$, respectively.
${ }^{d}$ The entry refers to $g_{\text {aa }}$ and $\Delta A_{\text {el }}$, respectively, due to the fact that $\mathrm{PF}_{5}, \mathrm{P}^{35} \mathrm{Cl}_{5}$, and $\mathrm{P}^{37} \mathrm{Cl}_{5}$ are prolate tops.

Table S2. Computed Vibrational Contributions $\Delta X_{\text {vib }}\left(X=B, C ; 10^{-2} \mathbf{c m}^{-1}\right)$ to the Ground-State Rotational Constants X_{0}, Rotational g Tensors (Dimensionless), and Electronic Contributions $\Delta X_{\mathrm{el}}\left(10^{-5} \mathbf{c m}^{-1}\right)$ to X_{0} of Selected Symmetric Top Molecules ${ }^{a, b, c}$

Molecule	$\Delta B_{\text {vib }}$	$\Delta C_{\text {vib }}$	g_{bb}	g_{cc}	ΔB_{el}	ΔC_{el}
PH_{3}	-5.215	-4.259	+0.02246	-0.03409	+5.512	-7.358
PD_{3}	-1.931	-1.527	+0.009707	-0.01706	+1.236	-1.842
PF_{3}	-0.09313	-0.09126	-0.06673	-0.03897	-0.9509	-0.3413
$\mathrm{PH}_{3} \mathrm{~F}_{2}$	-0.1062	-4.306^{d}	-0.05868	-0.3091^{d}	-0.5119	-48.99^{d}
$\mathrm{PD}_{3} \mathrm{~F}_{2}$	-0.09665	-1.519^{d}	-0.05711	-0.1547^{d}	-0.4849	-12.27^{d}

${ }^{a}$ See footnote a of Table S1.
${ }^{b}$ The $\Delta X_{\text {vib }}$ values were computed at the level of $\operatorname{CCSD}(\mathrm{T}) / \mathrm{AVQZ}$ for $\mathrm{PH}_{3}, \mathrm{PD}_{3}$, and PF_{3}, and $\operatorname{CCSD}(\mathrm{T}) / \mathrm{VQZ}$ for $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and $\mathrm{PD}_{3} \mathrm{~F}_{2}$ at the associated optimized equilibrium geometries (see Tables 3-4 of the main paper; the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{AVQZ}$ geometry of PH_{3} is as follows: $r_{\mathrm{e}}(\mathrm{PH})=$ $\left.141.51 \mathrm{pm}, \theta_{\mathrm{e}}(\mathrm{HPH})=93.559^{\circ}\right)$. The g factors as well as ΔX_{el} were always calculated at the $\operatorname{CCSD}(\mathrm{T}) / A W C V T Z$ level at the corresponding best estimated equilibrium geometries (see Tables 2-4 of the main paper).
${ }^{c}$ For $\mathrm{PH}_{3}, \mathrm{PD}_{3}, \mathrm{PF}_{3}$, and $\mathrm{PH}_{3} \mathrm{~F}_{2}$ the respective experimental ground-state rotational constants used to determine a semiexperimental equilibrium structure (see Tables 2-4 and relevant references in the main paper) are given in cm^{-1}. Therefore, we report the $\Delta X_{\text {vib }}$ and $\Delta X_{\text {el }}$ values of these species in the same unit (instead of MHz as in Table S1). The computed values for $\mathrm{PD}_{3} \mathrm{~F}_{2}$ serve as predictions.
${ }^{d}$ The entry refers to $\Delta A_{\text {vib }}, g_{\text {aa }}$, and $\Delta A_{\text {el }}$, respectively, due to the fact that $\mathrm{PH}_{3} \mathrm{~F}_{2}$ and $\mathrm{PD}_{3} \mathrm{~F}_{2}$ are prolate tops.

